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Introduction

In some settings, companies need to set prices for new products for which there is little or no

knowledge of demand, and no data on which to base elasticity estimates. Examples include phar-

maceutical companies introducing new types of drugs (Lilly’s Prozac in 1987), technology companies

introducing new products or services (Apple setting the price of music downloads in its new iTunes

store in 2001, and more recently, pricing its new iWatch), or a company introducing an existing

product in an emerging market (P&G launching Pampers in China in 1998). Although marginal

cost may be easy to estimate (it is close to zero for most drugs and music or software downloads,

and can be determined from experience for diapers), the firms are likely to know little or nothing

about the demand curves they face, and may not even be able to estimate price elasticities. How

should firms set prices in such settings? We show that in many situations, the firm need only

estimate the maximum price it can charge and still expect to sell at least some units. It then sets

price as though the actual demand curve were linear.

Assuming constant marginal cost, the firm calculates its optimal price as half of the sum between

the maximum price and the marginal cost. This price is independent of the slope of the linear

demand curve, although the resulting quantity is not. But as long as the firm does not need to

invest in production capacity or otherwise plan on a particular sales level (as would be the case for

most drugs, music downloads, or software), knowledge of the slope, and thus the ability to predict

its sales, is immaterial. As a result, the only problem at hand is to set the price.

How well can the firm expect to do if it sets the price based on a linear demand curve? Suppose

that with precise knowledge of its true demand curve, the firm would set the optimal price and

earn the maximum profit. The question we address is simple: How close will the profit based on

the price from the linear demand curve be to the maximum profit? In other words, how well can

the firm expect to do using this simple pricing rule? As we will show, if the true demand curve is

one of many commonly used demand functions, or even if it is a more complex function, the firm

will do very well. In what follows we will quantify this statement.

In many settings, for example, when introducing a new product in the market, there is not

enough data. A way to deal with this problem in practice is through considering comparable

products for which data is available and then enrich this process through learning the demand and

adjusting the pricing over time. Nevertheless, a key question is how to determine the first price to

set in the time horizon. In other settings, the seller is not able to dynamically adjust the price over

time and hence setting the first price “accurately” is critical. In this paper, we answer this question

where the seller needs to set the price of a new item with limited data on demand. In particular,

we propose a way of pricing the item using only cost and maximal price information. As a result,

we impose minimal assumptions on the problem and show that only with this information one can

obtain a good performance relative to the true (but unknown) optimal profit.
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Summary of Contributions: We propose a simple pricing rule: the firm only estimates the

maximum price it can charge and still expect to sell at least some units, and then sets the price

as though the actual demand curve were linear. We show that if the true demand curve is one of

many commonly used demand functions, or even if it is a more complex function, and if marginal

cost is known and constant, the firm will do very well - its profit will be close to what it would

earn if it knew the true demand curve. We derive analytical performance bounds for a variety of

demand functions, and test performance bounds computationally for some general demand models.

Literature review

The problem of pricing under limited demand information has received significant attention in both

the Economics and the Operations Management communities. In the past decade, four different

approaches have been considered in the literature.

The first stream posits a known parametric demand form as a function of the price. In some

contexts, knowledge of the problem can allow the seller to believe that the demand admits a

particular parametric form such as linear or logarithmic. The key question is how to estimate and

learn the true parameters from data. That is, the seller infers the parameters from the past prices

and realized demands by using methods such as least squares or maximum likelihood estimation

(see for example, [4] and [7]).

A second stream of literature takes a Bayesian approach. The seller postulates a parametric

demand model jointly with the prior distribution (for example, on the reservation price), using the

initial knowledge of the demand. Demand observations are then used to update the prior into a

posterior distribution (for more details see for example, [9] and [2]). In addition, among the first

papers to adopt this approach was the work by [11]. This paper used multi-armed bandits to learn

the optimal pricing strategy. A common assumption that is sometimes criticized relies on the exact

knowledge of the prior distribution.

The third stream of literature considers the interplay between learning the demand curve and

optimizing revenues over time without assuming any parametric form. This stream proposes an

approach based on exploration and exploitation. In the first (exploration) phase, the seller starts

with an initial “guesstimate” of the demand and sets a price to explore the demand. In the second

(exploitation) phase, the seller optimizes using the prices and demands from the previous phase

(see, e.g., [5]). A key result is to study how asymptotically the proposed approach converges to the

true demand. More close to our paper, [6] investigates the revenue loss in a multi-period setting

incurred if the seller uses a simple parametric demand model that differs significantly relative to

the underlying demand curve (i.e., is mis-specified).

The final stream of literature considers the dynamic pricing problem using robust optimization.

This approach assumes that the demand parameters lie in an uncertainty set. The seller then

optimizes for the worst case parameters in this set (see, e.g., [1]). Along the same spirit, an

alternative is to consider a distributionally robust approach. In this case, the seller aims to be

robust with respect to a class of demand distributions with similar parameters such as mean and

standard deviation (see, e.g., [3], [10] and [8]). Although the previous approaches incorporate model

uncertainty may yield conservative pricing strategies.
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Results

In this paper, we study the problem of pricing a product for which demand information is very

costly or even not available. We impose minimal assumptions on the problem: only the constant

marginal cost and the maximal price consumers are willing to pay are known. Finding a good price

for such an application is crucial as it may determine the long-term success of the product and can

have a significant impact on profitability. We propose a simple way of pricing by approximating

the true unknown inverse demand curve by a linear function for which one can easily compute the

optimal price. We show that using the price based on the linear approximation yields a good profit

performance for a wide range of inverse demand curves. We derive analytical bounds on the profits

and prices ratios for different demand models. In particular, we show a worst case guarantee of

8.8% for quadratic demand and 6% for semi-log (exponential) demand. We also show some tight

guarantees in closed form for monomial and log-log demands. Finally, we consider several practical

inverse demand curves and show computationally that the performance of our method is not far

from optimal. Finally, we present a general result for any non-increasing concave demand curve

that yields a 2 approximation in the worst case. We also discuss some of the limitations of this

approach by describing cases where the approximation might yield a poor performance. However,

in most cases, the profit guarantee is about 5 to 25%. As a result, we propose an operational

and simple method to price items for which no demand information is available along with the

guarantee that the profit is not far from optimal.
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