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INTRODUCTION: In a number of operational situations, historical data is not available or may not 

be directly relevant for obtaining probability distributions of key uncertainties. This is especially true 

in today’s market where firms frequently launch new products, often with very short life cycles. For 

example, the demands for new electronic products or seasonal fashion goods must be estimated in 

order to make inventory decisions, but prior data is usually not available for this task (Gaur et al. 

2007, Akcay et al. 2011). Similarly, production yield distributions for new items may be unknown 

due to added product features or novel production technology, yet an accurate determination of this 

uncertainty is necessary for making production lot decisions (Bansal et al. 2014). 

In each of these settings, a decision maker (DM) must rely on expert assessments (which may be 

subjective, driven by a formal quantitative model, or both) to determine the distribution of a random 

variable. Experts possess domain-specific knowledge and experience that they can use to assess 

various aspects of a distribution. Although a DM could ask an expert for direct estimates of the mean 

and standard deviation, existing literature suggests that he should instead elicit her judgments for a 

specific discrete set of points on the distribution and then use these points to deduce its moments. For 

example, consider an operations manager who asks a market researcher to specify the probability that 

sales of a product in the next month will be less than or equal to 90K units, 110K units, and 130K 

units and she states probabilities of 0.15, 0.55, and 0.80. How should the operations manager estimate 

the mean and standard deviation of the underlying distribution using these judgments?  

To answer this question, we focus on a primary issue: the expert's judgments may be prone to 

errors. These errors may result from a variety of sources, such as an expert's limited understanding of 

the physical or market system they are forecasting, limited experience or data availability for forming 

a judgment, inherent uncertainty in the estimation of the distribution, or imperfect translation of a 
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mental model into probabilities. Bansal et al. (2014) show with quantile judgments collected during 

an industry application that the estimates of the mean and standard deviation obtained when ignoring 

errors are only half as reliable as estimates obtained when the errors are incorporated appropriately. 

Akcay et al. (2011) establish that this loss in reliability of parameter estimates for demand 

distributions can increase the cost of an inventory system by 8 to 10%. Furthermore, ignoring these 

errors leads to an implicit assumption that all judgments are equally skillful even though it may be 

known a priori that some are more accurate than others.  

RESEARCH FOCUS: We develop an approach to obtain estimates of distribution parameters from 

cumulative probability function (CDF) judgments that may contain judgmental errors. Specifically, 

we estimate the mean and standard deviation as a weighted linear combination of the fixed values that 

correspond to these cumulative probabilities, where the weights are specific to the probabilities 

provided for these variable values and the expert's judgmental errors. We show how the structure of 

these errors can be quantified with calibration data using a scale-free model of judgmental errors, and 

how a DM should optimally weight the expert’s judgments as a function of this structure. We believe 

that this is the first attempt to solve this problem in an analytical fashion. 

METHOD: Our approach is comprised of two steps:  

In Step 1, the DM quantifies the expert’s judgmental errors using her responses on a set of the 

calibration distributions. These distributions are obtained using past data on the realizations of 

random variables that have a long recorded history, such as products that have been sold or produced 

repeatedly in the past. For each calibration distribution, the expert provides her CDF judgments for a 

set of fixed points. By comparing these probability judgments with the true probabilities for the fixed 

points available from the historical data, the DM can quantify the expert’s judgmental errors. These 

judgmental errors are decomposed into two parts: bias and residual noise.  

The bias measures the expert’s average under- or over-estimation of probabilities at different parts 

of the distribution. Prior literature has shown that experts tend to overestimate probabilities in the left 

tail and underestimate probabilities in the right tail. To account for these potential biases, we regress 

the true probabilities on a natural cubic spline of the stated probabilities. The resulting spline uniquely 
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transforms the stated probability into an unbiased estimate of the true probability. The DM then 

compares these unbiased estimates with the true probabilities to obtain the residual judgment errors, 

which are used to estimate a variance-covariance matrix of the standardized residual errors. 

In Step 2, the DM uses the structure of the judgmental errors quantified in step 1 to estimate future 

distributions. First, the DM obtains the expert’s CDF judgments at a set of fixed values on a new 

distribution. Next, using the spline identified in Step 1, he computes the unbiased probability 

judgments. The variance-covariance matrix of residual errors and the unbiased probability judgments 

are then fed into an optimization model. The optimization problem estimates the mean and standard 

deviation of the distribution as a weighted linear combination of the fixed values, selecting weights 

that minimize the variance in the estimates subject to an unbiasedness constraint. This problem has a 

unique closed-form solution for any location-scale distribution.  

STRUCTURAL RESULTS: We document some important structural properties of the optimal 

weights. Notably, the weights for estimating the mean add up to 1 and the weights for estimating the 

standard deviation add up to 0. In addition, by quantifying the uncertainty in the estimates, we 

establish a direct correspondence between the estimates from the method and an equivalent sample 

size of observed data. This provides an objective way to rank order experts and quantify their relative 

expertise in estimating demand or yield distributions.   

EXPERIMENTAL VALIDATION: Finally, we test our approach and demonstrate its application 

and benefits using data collected in an experimental study. Results show that our approach can im-

prove the estimation of the mean by more than 20% and the standard deviation by more than 50%. 

The benchmarks discussed in Akcay et al. (2011) for the benefit of improved estimation of demand 

distributions imply that our approach can reduce inventory costs in several systems.  
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