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   Stochastic systems with clearing policies model many different applications, including 

certain bulk server queues and buffers in communication systems and manufacturing. 

Clearing models were first studied mainly for the stock level of cumulative inventory 

systems. Other applications include public transportation models, where arriving customers 

form a queue until a server, e.g., bus or train, arrives and removes all the customers present. 

In the queuing context, systems with work removals were attracted attention and more. 

    In this paper, we consider a production/clearing model in a random environment where a 

single machine produces a certain product into a buffer continuously. Customers (e.g., 

retailers) generate the demand for the product. The system is totally cleared at stationary 

renewal times, i.e., the model characterized by stochastic inputs (production) and outputs 

(retailers) and an additional total "clearings" at certain random times. After such a clearing, 

the system is assumed to ready to start working again immediately; thus, the associated 

content process is assumed to be semi-regenerative, starting almost-anew at level zero at 

every clearing time. 

    Three core models are considered: (i) Each time a pre-deterministic control limit level q 

is reached by the content level, the buffer is cleared. In the language of inventory theory, 

the inventory level is controlled under continuous review because it is observed 

continuously over time and the controller "sees" the specific level once is reached. We 

denote the first clearing time by Tq. (ii) The clearing times form a Poisson process which is 

independent of inventory process; thus the clearing time for the first cycle is an exp(ζ)- 

distributed random time, say Tζ. Alternatively, this sporadic review can reflect situations 

where management may have a little control or information on the process (in the case of 

disasters or obsolescence). (iii) We also deal with a combination of the above policies, 

min(Tq , Tζ); clearing takes place at exponential time unless the level q is reached before, in 



which case the controller gets an emergency call, arrives immediately and clears the 

system.   

  The continuous models can be used to describe the control of epidemics, in which the 

quantity of interest is the number of susceptibles and the clearing corresponds to mass 

vaccination whenever the number of susceptibles exceed a specific number. Further use of 

these models includes inventory control. In many factories, due to physical capacity limits 

or safety and fire hazard regulations, inventory levels cannot exceed a specific level; thus 

the inventory is transferred to other locations.  

    Examples of sporadic models are disasters or obsolescence. In models with disasters all 

items stored are subject to external unexpected events that instantaneously bring the utility 

of all items on the shelf to 0, e.g., spoilage because of extreme weather conditions or a 

malfunction of a refrigerator that stores them. The family of models with obsolescence 

assumes that items become obsolete due to the introduction of a new product that replaces 

them in the market. Thus, the entire stock will simultaneously become obsolete at some 

(typically random) time. Examples are ample; in some industries like wireless chips the 

lifecycles of parts can be less than one year. Further examples range from avionics and 

military sectors, high tech products, communications, construction equipment, medical 

devices, transportations and supply chain networks. 

    In this paper we assume that the arrival times of demands form a Markov Additive 

Process (MAP) governed by a continuous-time Markov chain (environment), and the 

demand sizes are independent and have phase-type distributions depending on the type of 

arrival. The production process switches between predetermined rates which depend on the 

state of the environmental (note that the case of a fixed production rate is a special case of 

the latter). Negative inventory is not allowed- that is, there is no backlogging- so that level 

0 is a reflecting barrier and we assume that the demand is completely or partially satisfied.  



  For the three policies we assume the following costs: (i) fixed cost for each clearing; (ii) 

holding cost for the inventory and (iii) penalty cost for unsatisfied demand. Our objective is 

to obtain tractable formulas for the appropriate cost functionals under all of these policies.       

In this paper we focus on the discounted cost criterion using a discount factor β>0; 

however, we also deal with the long run average cost criterion. To the best of our 

knowledge, such a general model has been never investigated in clearing/disaster literature 

and thus our research differs. Furthermore, while most of the papers involve analytic 

derivations of the quantities of interest, we emphasize our study using a more probabilistic 

approach; this enables a simple derivation of quantities of interest and obtains easy-to-

implement explicit formulas for each policy. Our analysis is based on martingale 

techniques and on exit-time results for Markov-modulated fluid flow (MMFF) models. 

Starting from this analysis, one can minimize the cost of the system with respect to the 

parameters (e.g. q, ζ, the production rates, the demand sized and the costs) under each 

policy. 

In this paper, we show (through numerical examples) that the discounted expected cost is a 

convex function of q (for Tq policy) and ζ (for Tζ  policy) and increases in production rates; 

we also showed the trade-off between the fixed and lost demand costs and the holding costs 

as a function of q and ζ; however, due to their different behavior on the total cost, their 

impact is opposite. Under the sporadic control policy, a comparative study between the Tζ 

policy and the min(Tq , Tζ) policy observes that for small values of ζ, the combined policy 

min(Tq , Tζ) performs better; thus it is worthwhile the controller to determine the optimal 

q∗ in order to reduce the total cost. However, for high values of ζ, the performance of both 

policies coincides and it would be easier for the controller to implement the sporadic policy 

only. Finally, the average case was investigated, and it was shown that both the discounted 

and the average cost functionals have a similar behavior.         




