The General Hull-White Model
and Supercalibration

John Hull and Alan White

Term-structure models are widely used to price interest rate derivatives,
such as swap options and bonds with embedded options. We describe how
a general one-factor model of the short rate can be implemented as a
recombining trinomial tree and calibrated to market prices of actively
traded instruments. The general model encompasses most popular one-
factor Markov models as special cases. The implementation and the
calibration procedures are sufficiently general that they can select the
functional form of the model that best fits the market prices. This
characteristic allows the model to fit the prices of in- and out-of-the-money
options when there is a volatility skew. It also allows the model to work well
with economies characterized by very low interest rates, such as fapan, for

which other models often fail.

model the evolution of either forward

rates or discount bond prices and (2) to
describe the evolution of the instantaneous rate of
interest. The first approach was introduced by
Heath, Jarrow, and Morton (HJM 1992), who mod-
eled the behavior of instantaneous forward rates.
Their method is both powerful (it encompasses
many other term-structure models as special cases)
and easy to understand. It exactly fits the initial
term structure of interest rates, it permits as com-
plex a volatility structure as desired, and it can
readily be extended to as many sources of risk as
desired.

Recently, the HJM model was modified by
Brace, Gatarek, and Musiela (1997), Jamshidian
(1997), and Miltersen, Sandmann, and Sonder-
mann (1997) to apply to noninstantaneous forward
rates. This modification has come to be known as
the LIBOR Market Model (LMM). In one version,
three-mmonth forward rates are modeled, which
allows the model to exactly replicate observed cap
prices that depend on three-month forward rates.!
In another version, forward swap rates are mod-
eled. This modification allows the mode] to exactly
replicate observed Huropean swap option prices.
The main difficulty with the HJM/LMM models is

wo major approaches to modeling the
term structure of interest rates are (1) to
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that they are difficult to implement by any means
other than Monte Carlo simulation. As a result,
they are computationally slow and difficult to use
for American or Bermudan options.?

The other major approach to modeling the
term structure is to describe the evolution of the
instantaneous rate of interest, the rate that applies
over the next short time interval. Short-rate models
are often more difficult to understand than models
of the forward rate. However, they are imple-
mented in the form of a recombining tree similar to
the stock-price tree first developed by Cox, Ross,
and Rubinstein {1979). Thus, the computation is
fast and the models are useful for valuing many
types of interest rate derivatives.

The Generalized Mode!

In the general Hull-White model, some function of
the short rate, f{r), obeys a Gaussian diffusion pro-
cess of the following form:

df(r) = [6(t) — a(®)f(1)]dt + o(t)dz. m
The function 6(t) is a term-structure parameter that
is selected so that the model fits the initial term
structure. The functions a{t) and o(¢) are volatility
parameters that are chosen to fit the current market
prices of a set of actively traded interest rate
options. The diffusion process, dz, is a standard
Wiener process with a zero mean and a variance
equal to df.

The general Hull-White model contains many
popular term-structure models as special cases.
For example, when f(r) = v, a(t) is zero, and © is
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constant, it is the Ho-Lee (1986) model. When f{r)
=rand a(t) is not zéro, it is the original Hull-White
{1990) model. In both these models, future interest
rates of all maturities are normally distributed and
analytic solutions exist for the prices of bonds and
options on bonds. When f(r) = Jr, it is a model
developed by Pelsser (1996), and when fr) = In, it
is the Black—Karasinski (1991) model, which is per-
haps the most popular version currently in use. In
this model, the future short rate is lognormally
distributed and “rites of all other maturities are
approximately lognormally distributed.

Implementation

In this section, we describe how the generalized
model is implemented in a recombining trinomial
tree. Initially, we assume that volatility parameters
a(t) and o(t) and the functional form f(r) have been
selected. Later, we will describe how these param-
eters are chosen.

First, we set the current time to zero and define
a deterministic function g that satisfies

dg = [0(t) —a(f)g(t)dt. @)
We then define a new variable, x, that is
x(rt) = fir) - g()- ()

The new variable obeys a much simpler diffusion
process than df{r) in Equation 1:

dx = —a(t)xdt + olt)dz. (4)

The initial value of g is chosen so that the initial
value of x is zero.® This process is mean reverting
to zero; so, if x starts at zero, the unconditional
expected value of x at all future times is zero.

Building a tree for f(r) involves four steps. The
first step is to select the spacing of the free nodes in
the time dimension. The second step is to decide on
the spacing of the nodes in the interest rate dimern-
sion. The third step is to choose the branching
process for x(r,f) through the grid of nodes. Once
this task is completed, the fourth step involves
shifting the tree by the value of g at each point in
time. The result is a tree for the function f{r).

Choosing the Times at Which Nodes Are
Placed. When a term-structure model is imple-
mented, it is usually for some specific purpose,
such as pricing an option onaswap. Asa result, the
convenient approach is to construct the tree with
nodes on specified dates, such as payment and
exercise dates. For example, suppose we wish to
build an n-step tree with nodes at times #g, 1,73, - . -
t, where tg=0, {;>t_j,andt, =T, the longest date
to be considered. Because the values of all bonds,
swaps, and other instruments are computed by
discounting their payoffs back through the tree, T
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must be chosen so that no payments occur after T\
We should also ensure that we have chosen our
node times, £/, so that we have a set of nodes on
every payment date. Other node times can be
selected to increase the resolution of the tree.

Choosing the Values of x Where Nodes Are
to Be Placed. Once the times at which nodes are
to be placed have been chosen, we must choose the
values of x where nodes are to be placed at each
time step. First, we place a node at x = 0. Then, at
each time step #; (wherei=1,...,n), we placenodes
at +Ax;, ¥2Ax;, . . ., m;Ax;. (The determination of
the value of n1; will be explained in the following
section.) In choosing the Ax/'s, the only constraint
is that the spacing of the nodes must be wide
enough to represent the volatility of x at that time.
We meet this requirement by setting the x-spacing
at time ; to*

Ax; = G(fi_ﬂm' ©

The next stage of the implementation is to
determine how the nodes in (x,t} space will be
connected together, which will determine the m;’s,
the indexes of the highest and lowest nodes that are
attainable at each time step.

Choosing the Branching Process. We next
choose the branching through the tree so that at
every point in the tree, we are mimicking the diffu-
sion process as closely as possible. We do so by
ensuring that the expected change and the variance
of the change in x seen on the tree are the same as
predicted by the diffusion process for x. At each
node in the tree, we select the branching process
and the branching probabilities accordingly.

Suppose we are at some node jAx; at time step
i and propose tobranch tonodes (k—1)Ax;,1, kA% 1,
and (k + 1)Ax;,; at ime step i + 1. From the diffusion
process for x, we calculate the expected mean
change in x over the next time interval, E(dx} =M,
and the second moment of x, E(dx*) =V + M25

We let the probabilities of branching to
(k—1)A%;,1, kAx; 1, and (k + 1)Ax;,1 be, respectively,
Par P and p,. Matching the mean and variance
gives

AY + M = kAXpuq + (Pu= PO)AYi
V & (jax + M = B0x130)" + 2k~ ) %0
+ (py ~ P(Bx;)°, (€)

Solving Equation 6 produces
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172 -
Pa= —+ o5t ~ (7b)
2A:":i+1
and
P = 1=~ 73
Axiﬁ

where e = [jAx; + M - kAx;  1/Ax;,1 and is the dis-
tance from the expected value of x to the central
node to which we are branching.

If V= Xt — &) and Axpyy = oft) x

[3(t; .1 —1;), it can be shown that all the branching
probabilities are positive if -J2/3<e< 273 That
is, when branching from a point jAx; we should
choose as the central node of the three successor
nodes a node within 2/3Ax; +10f the expected
outcome. Usually, we would choose the node clos-
est to the expected outcome by setting k to the value
of {jAx; + M)/Ax;,; rounded to the nearest integer.
This process ensures that we are within Ax;,1/2 of
the expected outcome, and the condition for posi-
tive probabilities is satisfied.

The procedure just described determines the
tree branches and branching probabilities. It also
defines the highest and lowest possible node at
each time step. The index of the highest node at
timestep i+ 1, m;,q, is determined by the branching
from my;, the index of the highest node at time step
i, Similarly, -m;,{, the index of the lowest node at
time step i + 1, is determined by the branching from
~m;, the index of the lowest node at step i. At time
step 0, there is only one node, my = 0. In this way,
the highest and lowest nodes at the first time step
and all subsequent time steps can be determined.

We illustrate the calculation with an extreme
example. Suppose that £ =0, {1 = 1.5, {; = 1.6, and

t3 = 2.0; so, the time steps are of widely varying
lengths. (In. most applications, the time steps are
much more equal.) Suppose also that the volatility
parameters are a(t) = 1.0 and o(t) = 0.30 for all £. The
node spacing at each time step is determined from
Equation 5. The result is Ax; = 0.6364, Ax; = 0.1643,
and Axz = 0.3286. The grid of nodes on the tree is,
therefore, as shown in Table 1.

Table 1. Grid of Tree Nodes
t=0 t=15 E=16 $=2.0
0.3286 06573
0.6364 0.1643 0.3286
0.0000 0.0000 0.0000 0,0000
-0.6364 -0.1643 -0.3286
-0.3286 ~0.6573

The next step is to compute the branching
process. Starting at the root node (t =0 and x = 0),
we compute x + M = x —ax x 1.5 = 0 and V = 0.30°
x 15 = 0.135. The node closest to the expected
outcome is the node k = 0 at £ = 1.5. For this node,
e =0, and from Equations 7, the branching proba-
bilities are py = 0.1667, p,,, = 0.6667, and p,, = 0.1667.
Similarly, at the highest node at the first time step
{t=1.5and x =0.6364), x + M=x~axx0.1=0.5728,
V = 0,307 x 0.1 = 0.009, and (x + M)/Ax;.1 = 3.486,
sok =3ande=(0.5728-3x0.1643)/0.1643=0.4857.
The results for every node are in Table 2, and the
shape of the tree is shown in Figure 1.

Adjusting the Tree. The final stage of the
free-building process involves adding the function
g(t) to the value of x at each node. Because g{f) is a

Table 2. Tree-Branching Calculation

o

t x M 14 k £ Pu Pm Pd

0 0 0 0.135 0 (.0000 0.1667 0.6667 0.1667
15 0.6364 -0.0636 0.G0g 3 0.4857 0.5275 0.4308 {.0418
15 0.6000 0.0000 0.009 0 0.000G 0.1667 0.6667 0.1667
15 ~-(.6364 0.0636 0.009 -3 -(.4857 0.0418 4308 0.5275
16 0.6573 -0.2629 0.036 1 0.2000 0.2867 0.6267 0.0867
1.6 0.4930 -{.1972 0.036 1 -(.1000 0.1217 0.6567 0.2217
16 0.3286 -0.1315 0.036 1 -0.4000 0.0467 0.5667 0.4467
16 (1.1643 —).0657 0.036 0 0.3000 0.3617 0.5767 0.0617
1.6 0.0000 0.0000 0.036 0 0.0000 0.1667 0.6667 0.1667
1.6 -{.1643 0.0657 0.036 0 —0.3000 0.0617 0.5767 0.3617
1.6 —{2.3286 0.1315 (.036 =1 0.4000 0.4467 0.5067 0.0467
1.6 -0.4930 0.1972 0.036 -1 0.1000 0.2217 0.6567 01217
1.6 -{.6573 0.2629 0.036 -1 -0.2000 0.0867 0.6267 0.2867
36 ©2001, AIMR®
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Figure 1. Tree-Branching Structure

function of 8(¢) and the function 8{t} was selected
s0 that the model would fit the term structure, the
de facto process is to adjust the nodes in the tree so
that it correctly prices discount bonds of all matu-
rities. This adjustment is carried out in a sequential
process starting at the root node.

We denote node (i,7} as the node on the tree at
time #; for which x = jAx; (0 <i<m; -1y S j <my) and
define

8 = g(k)

-y = value of x at node (i)

£ i =value of f{r) at node (7,);
itis Xi i+ 8i

T = interest rate at node (i,);

it isf”l(xl-,j + g!)
p{i,j | i-1,k) =the probability of transiting from
node (i-1,k) to node {i,})

Q(,j|hk) =value at node (k) of a security
that pays off $1 at node (i,j} and
nothing at any other node®

Qi,j = Q(L] | 0, O)

The variable Q(i,j|h k) is known as an Arrow-—
Debreu (AD) price. We will refer to the Q; ; price as
the root AD price for node (i, j).

The root AD price for node (i, ) can be deter-
mined once the root AD prices for all nodes at time
f; 1 have been determined. To demonstrate, we
notethat 57 =
QG71i-10) = plif li-LRexplriul—ti]  (82)

and

Qf,j = ZQ(i,ﬂf - 1,k)Qi_1,k
k
(8b)
= Y p(jli-Lkexpl—r; g (- 4.)]Q; 4 &/
k
where the summeation is over all nodes at time step
ti_l.
Now, consider a discount bond that pays §1 at
every node at time step i+1. Let P; 1 be the price at
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node (0,0) of this discount bond and let V; i be the
value of this bond at node (i,f). The process for
determining adjustment g; at time step 7 involves
two stages. First, we determine Q; ; for every node
j attime step i. Using these root AD prices, we then
compute the value of P;,y. Because the discount
bond pays $1 at every node at ¢;,, the value at the
(i,jith node is

Vi =explryj (i — 1]
= explf (i + g)(tia1 — 1), ©)

and the present value is

Pig= ZQi,jVi,j
4 (10)
= %0 xplof (i 8t~ 1)
]

The value of g;is adjusted until the value computed
by using Equation 10 matches the price of the dis-
count bond computed from the current term struc-
ture. .

The implementation of this two-stage process
proceeds in the following way. The value of a secu-
rity that pays $1 at the root node is $1, so Qg g = 1.
Based on the value of ( g, we use Equation 10 to
compute gq to match the price of a discount bond
maturing at £1. This process allows us to use Equa-
tion 8b to compute Qy ; for every node j, which then
allows us to use Equation 10 to compute g; and so
on.

To complete the illustration of the tree-
building process, we now fit our example tree to a
term structure. Suppose that the term structure of
continuously compounded discount bond yields is
given in Table 3 and that x = f{r) = In7. In this case,
the inverse function is 7 = f (%) = ¢*. The tree-
adjustment process is to first set (Jp g equal to L.
Then, solving Equation 10 at the root node,

Py = Qg expl-f Hx; + g)tia1 — 1,
0.9277 = expl-exp(0 + go)(1.5)],

we find gg = —2.9957 and g g = f (xg,0 + Qo) =
exp(—2.9957) = 0.05. This rate is used to calculate

Tabie 3. Term-Structure of Continuously
Compounded Discount Bond Yields

Time to Maturity Yield Bond Price
1.5 years 5.00% $0.9277
1.6 5.10 0.9216
2.0 525 0.9003
25 5.30 0.8759
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Qi1 = QooPuexp(-ry,n % 1.5) = 01546,

Q0 = QooPmexpl-rp,0x 1.5) = 0.6185,
and

Q1,-1 = Qo opaexpl-rg,o % 1.5) = 0.1546,

where the probabilities p,,, p,,,, and p, are the prob-
abilities of transiting from the rootnode to the three
nodes at the first time step. With these solutions in
hand, we use Equation 10 to find g; and so on. The
results of the calculations are in Table 4.

The construction of the tree for a lognormally
distributed short rate that exactly fits the term
structure is now complete. Notice that the func-
tional form fir) comes into play only at the stage
when the term structure is being fit (although, as
we will show, it does have an impact on the vola-
tility parameters chosen). Prior to fitting the term
structure, the tree-building process is completely
generic. Also note that when the tree was being fit
to the term structure, to compute the interest rates

prices of actively traded options. Specifically, we
use a numerical procedure, such as the Levenberg—
Marquardt algorithm (see Press, Teukolsky, Vetter-
ling, and Flannery 1993), to find the set of volatility
parameters that minimizes the sum of the squares
of the differences between the model prices and
market prices for these options.

Because the volatility parameters are func-
tions, we must parameterize them before we can
start the calibration process. Typically, we approx-
imate the volatility functions with piecewise linear
functions, which corresponds fo selecting a set of
times Tg, Ty, Tp, . . o, Ty, where Ty = 0, T; > Tj_y.
Then, we define the reversion rate function as

alt) = o+ Byt With Ty < Ty (11)
where o is the intercept and B; is the slope of the
ith line segment. To ensure continuity of the line
segments, we require that

O+ BiTist = Oay + PrygTiny,

at the fourth time step, we had to specify a fifth time Bo = 0,

step at time 2.5 years. This additional specification and

was necessary to allow us to define the term of the B, = 0
m = 0.

rates that were being determined at the fourth time
step. In this case, they were (.5-year rates,

Calibration

Calibration is the process of determining the vola-
tility parameters that are used in the term-structure
model. Itis analogous to selecting the volatility that
willbe used when impletmenting the Black-Scholes
model to price equity options. In the case of the

The first condition ensures that the function is con-
tinuous, and the second and third ensure that it is
constant in the first time interval and beyond the
last specified date.” These constraints ensure that
the parameter set has m degrees of freedom. The
volatility function is defined in an analogous way as

of) = v+ & with T; << Tpyy, (12)

where ;15 the intercept and §;is the slope of the ith

[ general Hull-White model, the volatility parame- line segment. To ensure continuity of the line seg-
| ters that are to be Ch.OSEIl are the funci?lf)ns a(t) and ments, we require that
H o(t). The procedure is to choose volatility parame- B BTy = Youg + 8soaT;
ters so that the tree implementation of the term- 2T TR T Aty
{ structure model accurately replicates the market 8 =0,
Table 4. Fitting the Tree to the Term Structure
r;j {percent) Vij
10.664 0.0805 0.9582
2.048 0.0658 0.9645
7.677 10.238 0.0064 0.0302 0.9698 0.9501
11.663 6.514 7.370 G.1546 0.1024 0.2023 0.9884 0.9743 0.9638
5.000 6.172 5527 5.306 1.0000 0.6185 (.4098 0.4306 0.9277 0.9938 0.9781 0.9738
3.266 4.689 3.820 0.1546 0.1024 0.2059 0.9967 $.9814 0.9811
3.979 2.750 0.0064 0.0313 ) 0.9842 0.9863
3.37¢ 0.0664 ) 0.9866
2.864 0.0813 0.9886 !
8o 81 82 &3 ;

~2.9957 -2.7851 ~2.8956 -2.9364
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and
&, =0.

The choice of the number of corner points in the
volatility functioris and the times at which the cor-
ners should be placed is more of an art than a
science. The more corner points, the more degrees
of freedom and the better the fit to observed market
prices. Often, the number and timing of the corner
poinis are determined by the terms of the options
used in the calibration. If we have m calibrating
options with m distinct maturity dates, then hold-
ing one volatility function constant (usually the
reversion rate) and choosing the corner points of
the other to be the option maturity times ensures
that we can fit the option prices exactly.

The most common sotrce of option prices for
calibration purposes. is quotes from brokers on
Buropean-style swap options, caps, and floors.
Table 5 shows a typical panel of U.S. dollar swap
option quotes. The table contains the volatilities for
a range of at-the-money swap options. If these vol-
atilities are used in the standard Black swap-
option-pricing model, they result in the mid-
market prices for the options. The market prices of
the options range from $0.12 for the 30-day option
on a $100 notional 1-year swap to $5.45 for the
5-year option on a 10-year swap.

The results of fitting both the normal and the
lognormal versions of the model to these data, with

only a single reversion rate and a single volatility,
are shown in Table 6, which provides the best-fit
reversion rate, the best-fit volatility, and the root
mean square pricing error (RMSE).® The fit of the
model to the option prices is moderately good for
both versions of the model, although the normal
version fits somewhat better than the lognormal
version. The mean absolute percentage pricing
error (the average of the absolute price error
divided by the market price) is about 2.5 percent.
Those who are not familiar with the various forms
of term-structure models should also note that the
magnitude of the volatility parameter depends on
the functional form of the model. In the normal
model, the volatility parameter corresponds to the
standard deviation of annual changes in the short-
term rate of interest, whereas in the lognormal
model, it is the standard deviation of proportional
changes in the rate. Thus, if interest rates are about
7 percent, a 1.4 percent annual standard deviation
roughly corresponds to an annual standard devia-
tion of proportional changes of 20 percent.

To improve the fit, we can use more volatility
parameters. Table 7 shows the results of increasing
the parameter set so that there is a corner in both
the reversion rate and volatility functions at every
option maturity date. Comparing Tables 6 and 7
shows that increasing the number of volatility

Table 5. Mid-Market Volatilities for At-the-Money Swap Options, August 6,

1999

. Swap Life

L {years)
Option Life 1 ~2 3 4 5 7 10
30 days 19.00 19.50° 19.50 19.50 19.50 19.50 19.50
3 months 19.50 2013 2013 20.13 19.98 15.98 19.98
6 months 19.90 19.75 19.75 19.70 19.60 19.50 19.50
1 year 21.55 20.80 20.20 19.90 19.6C 19.20 18.78
2 years 21.30 2040 19.85 1%.30 19.00 18.70 18.2¢
3 years 20.80 19.75 19.20 18.85 18.60 18.20 17.63
4 years 20.43 19.20 18.80 1840 18.10 17.60 17.03
5 years 19.85 18.73 18.28 17.93 17.58 16.98 1643

Note: The swap is assumed to start at the expiration of the option, so the total life of the trensaction is

the sum of the option life and the swap life.

Table 6. Best-Fit Volatility Parameters for Normai and Lognormal Versions of
the Model: Two Volatility Parameters

Reversion Rate Volatility
Model (&) (o) RMSE
Normal 0.0267 0.0146 0.0564
Lognormal 0.0243 0.2093 0.0745
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Table 7. Best-Fit Volatility Parameters for Normal and Lognormai Versions of
the Model: Sixteen Volatility Parameters

Normal Tognormal

Date alt) olt) a(t) o{)
9/08/99 0.1878 0.0147 (.0437 0.2144
11/05/99 0.0205 0.0135 0.0596 0.2137
2/04/00 0.0010 0.0135 0.0007 0.1669
8/05/00 (.0010 0.0136 0.0002 0.2261
8/05/01 0.0003 0.0133 £.0005 0.1513
B/65/02 0.0003 0.0132 0.0002 0.2199
8/05/03 0.0010 0.0130 0.0008 0.1436
8/04/04 0.0212 0.0130 0.0140 0.2071
RMSE 0.0310 0.0282
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parameters from 2 to 16 does improve the fit, but
not dramatically so. The volatility parameter for
the normal model is relatively constant, and the
reversion rate changes only five times, which sug-
gests that about the same fit could be achieved with
far fewer parameters. In the lognormal model, in
contrast, both a(t) and o(t) are highly variable.

Some experimentation reveals that fitting this
full panel of option prices is not possible by using
our model or, indeed, any one-factor Markov
model of the term structure. As a result, when these
types of models are used in practice, they are cali-
brated in the same way that models for pricing
equity and forward exchange options are cali-
brated. A different volatility parameter set is used
for every option or for every type of option.

Usually, the volatilities of the European
options that are used to hedge the option in ques-
tion will be used for calibration. For example, a
common use of these models is the pricing of Ber-
mudan swap options. To calibrate our model to
price Bermudan swap options, we would use a
diagonal strip of the volatilities from Table 5. If we
were interested in pricing a five-year Bermudan
swap option, we would note that if it is exercised
at the one-year point in its life, it is similar to a one-
year European option on a four-year swap. Simi-
larly, exercising at the two-year point is similar to
a two-year European option on a three-year swap,
and so on. As a result, we would usethe 1 x 4,2 x 3,
3x2,and 4 x 1 swap option volatilities to calibrate
the model and would probably use these options to
hedge the Bermudan option, By using four volatil-
ity parameters, we could exactly fit the calibrating
option prices with our model and achieve a good
hedge—or at least a good hedge for the prices
calculated by the model.

Supercalibration

In the previous section, we discussed how the vol-
atility parameters for a particular form of the model
can be determined from market prices of options.
Inthis section, we describe how the functional form
of the model can also be determined from the mar-
ket prices of options.

Black’s model, the market standard for caps
and European swap options, assumes that interest
rates are lognormally distributed. If rates really
were lognormally distributed, the volatility used to
price a cap or a swap option would be independent
of the option strike rate. The U.S. dollar cap market
has developed to the point that brokers are now
able to provide volatility quotes for in- and out-of-
the-money caps and floors. The usual practice is to
provide at-the-money volatility quotes for the stan-
dard set of caps and to provide a table of spreads
to be added to the volatilities of in- and out-of-the-
money caps. A typical set of broker quotes is shown
in Table 8,

Because the market volatilities for caps and
floors are not independent of their strike rates, we
can conclude that the lognormal assumption does
not reflect the market perception of the distribution
of rates. Table 8 shows that volatilities for in-the-
money caps are significantly higher than those for
at-the-money caps. Except for very long maturities,
out-of-the-money caps also have somewhat higher
volatilities than at-the-money caps. The market’s
perception is, therefore, that very low rates and (to
a lesser extent) very high rates are more likely than
the lognormal distribution would suggest.

The term-structure model implied by Equation
1 assumes that some function of the short rate
x = f{r) follows a normal mean-reverting process.
To understand the role that the functional form f{r)
plays, note that the process that short rate r obeys is
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Table 8. Voliatility Adjustments for In- and Qut-of-the-Money Caps and Floors for July 27, 1999

At-the-Money (ATM) Cap Sirike Rate
0

o

CapLife -~ ATM

(years) Volatility -3 -2 -1 -0.5 0.5 1 2 3
1 14.88 _— — 1.00 0.50 0.00 1.00 — -
2 18.38 3.00 2.00 1.00 0.50 G.50 1.00 125 1.50
3 19.19 3.15 2.15 115 0.75 0.76 0.75 1.10 110
4 19.50 350 2.50 1.50 0.75 0.50 0.50 1.00 1.00
5 19.50 3.00 2.00 1.20 0.80 0.00 0.50 1.00 1.00
7 . 18.88 3.00 2.00 1.60 0.50 0.00 0.00 0.00 0.00
10 18.19 3.00 2.00 1.00 0.50 0.0¢ -0.25 -0.50 -0.50

dr e e dt +M0(ﬂ iz, 13) level ofra’_ces, andrate's are lognormally dis.tribj

ox uted. This model is the Black-Karasinski

where I is the inverse of the function f; that is,

#=h{x). The primary effect of the choice of the

functional form is its impact on the volatility com-

ponent of this process, o(t)oh(x}/ox. This choice of
the functional form determines the relationship
between the level of rates and the variability of

rates, .

We now propose a more general model in
which o(t)ah(x)/dx = o(t)s(r) for some function of
the level of rates 5(r). The function o(f)s(r) is known
as the local standard deviation of the rate, and
o(t)s(r)/r is the local volatility.

So, far, we have considered two cases:

1. x=f(r)=r or r=h{x) = x, for which o(t)s(r) =
o(t), rates always have the same level of vari-
ability, and future rates are normally distrib-
uted. This model is the original Hull-White
model.

2. x=In(r)orr=exp(x), for which o(t)s(r) = oft )7,
the variability of rates is proportional to the

model.

These two models have s(r) = T and s(r) =7. Just
as the volatility functions, a(t} and o(t), are con-
structed as piecewise linear functions, s(r) can also
be constructed as a piecewise linear function. For
this construction, we select a number of different
ratesr; > 0 fori=1,2,...,nand the corresponding
values of s(r;), namely, s; > Ofori=1,2,..., n We
usually force s(r) to pass through the origin, which
ensures that as # becomes small, the variability of
rates vanishes and negative rates do not occur. The
form of s(r)/r for the three models is shown in
Figure 2.

The selection of the values of 5; fori=1,2,...,
1 now becomes part of the calibration exercise. We
will choose the values that result in a term-
structure-model implementation that most closely
replicates the market prices of the options. Cur
least-squares best-fit criterion is the same as before.
Because the variability of the short rate in Equation

Figure 2. Relationship between Level of Rates and Local Volatility
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13 is o(£)s(r), we cannot determine the forms of o(#)
and s(r) simultaneously. As a result, we will first
find the oft) that best fits the at-the-money options
and then, holding that function fixed, find the s(r)
that best fits the prices of the in- and out-of-the-
morney options.

To illustrate the effect of calibrating the func-
tional form to the volatility of in- and out-of-the-
money options, we set () = 1 and find the best 5(r)
to fit the prices of 3-year caps and floors. We set the
corner points of s(r) at the at-the-money rates of
10.5 percent, &1 percent, and #2 percent. And we
repeat this process for the 7-year and 10-year caps
and floors. The best-fit functional form of the local
volatility for each of the three maturities is shown
in Figure 3. The overall result is not surprising. To
raise the price (and implied volatility) of in- and
out-of-the-money caps and floors, we have to
increase the local volatility as we move away from
the money. The shorter the life of the option, the
more extreme the adjustment.

Conclusion

We have explained how a general model of the
short rate can be implemented and calibrated to
market data. The calibration process includes the
selection of the functional form of the term-
structure model that best fits the prices of in- and
out-of-the-money options. Although not discussed
in this article, the supercalibration process is also
useful in economies like Japan’s, where interest
rates are very low. In this situation, # a normal
model is used, the probability of rates becoming

negative is large and if a lognormal model is used,
the volatilities must be in excess of 100 percent to
capture the observed variability of rates. A lognor-
mal model with these large volatilities implies that
rates will become extremely variable when they
rise above 1 percent. This issue is discussed in more
detail in Hull and White (1997).

The supercalibration procedure we described
is in the same spirit as the implied-tree methodol-
ogy for equity options developed by Derman, Kani,
and Chriss (1996) and Rubinstein (1994). These
authors made the local volatility of the stock price
a function of time and the stock price, and they
developed procedures to infer the local volatility
from option prices. The supercalibration procedure
also suffers from the same weakness as the implied-
tree methodology, namely, that we are adding
many free parameters to the model to force it to fit
a complex data set. The result is not a model that
more accurately reflects the way the term structure
actually evolves; it is a model that better repro-
duces observed market prices.

Views as to what is best in fitting a model to
data range widely. At one exireme is the “aca-
demic’s view” that simple, stationary models are
best. Thus, the volatility parameters should not be
functions of time and the functional form of the
model should not change over time. The behavior
of models with. these properties will be the same in
the future as it is now. If we restrict ourselves to
stationary models, however, we can fit observed
market prices only approximately. At the other

Figure 3. Best-Fit Local Volatility of Caps and Floors
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extreme is the “frader’s view” that the model
should exactly fit all observed option prices. If this
requirement is pursued, many free volatility
parameters must be estimated, the model becomes
highly nonstationary, and the future behavior of
the model may differ a great deal from its current
behavior. In particular, the future option volatilities

implied by the model may be very different from
the volatilities of today. OQur view is thata moderate
approach should be taken in fitting a model to
observed option prices. Modest nonstationarity
does not seriously affect the future behavior of the
model and allows a good fit to today’s prices.

Notes

1. A cap (floor) is an option that sets a predetermined maxi-
mum (minimum) on a floating rate of interest. For example,
an interest rate swap with a cap (floor) places a maximum
{minimum) on the interest rate paid on the floating rate leg.

2. An American option can be exercised on any business day
after purchase through the expiration of the option,
whereas a European option can be exercised only at the end
of its life, on its expiration date. Bermudan options are
exercisable only on specific dates; for example, many swap
options can be exercised only on any swap payment date.

3. When the reversion rate is constant, the form of g is
g = g(O)e{t + j; 0(s)e ¢ ds. Although this equation
laoks ominous, we do not actually ever have to determine
its exact form. The addition of this function to the process is
simply a device that simplifies the implementation.

4. Thenode spacing can be set to Ax; = 6(i; ) Jrlt;— £, ) for
a range of values of # without impairing the numerical
procedure. We chose n = 3 because it allows the rumerical
procedure to exactly replicate the first five moments of the
distribution of x(#;) | x(#;_;) when the reversion rate is zero.
This vafue produces a slightly more rapid convergence than
do other values of 1.

5. A reasonable approximation is M = —xa{f;) (1~ =
—jAx;a(t;)(te1 ~ i) and V = o2{#))(t; 41— £;). When a and
o are constant, more exact calculations are possible.

6. The value of any security with deterministic payoffs can be
easily computed using the Arrow-Debreu prices: Letting
C; ;be the payment received at the (i fth node, the value of
the security at the (,K)th node is then
Z;> thQ(i j|1,K)C; j, where the summation is taken

over all time steps i later than 1 and all nodes j at each time
step.

7. Neither of these conditions is required. We use them only
because of a belief that the volatility functions should be
continuous and bounded. An alternative parameterization
that seems to work well is a step function in which the
parameters are plecewise constant. Note that the time divi-
sions used for the two volatility functions do not need tobe
the same.

8. The root mean sguare error is defined as

JZ?: 1P oder = Pmﬂrket)z/ﬂ , where # is the number
of option prices being fit.
.!‘
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