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The Hull-White interest rate tree-building procedure
was first outlined in the Fall 1994 issue of the Journal of
Derivatives. It is becoming widely used by practitioners.
This procedure is appropriate for models where there is some
function x = f{r) of the short rate 1 that follows a mean-
reverting arithmetic process. It can be used to implement the
Ho-Lee model, the Hull-White model, and the Black-
Karasinski model. Also, it is a tool that can be used for
developing a wide range of new models.

In this article we provide more details on the ways -

Hull-White trees can be used. We discuss the analytic

results available when x = 1, and make the point that it is
important to distinguish between the At-period rate over one
time step on the tree and the instantaneous short rate that
is used in some of these analytic results. We provide an
example of the implementation of the model using market
data, We show how the tree can be designed so that it pro-
vides an exact fit to the initial volatility environment (but at
the same time explain why we do not recommend this
approach). We also discuss how to deal with such issues as
variable time steps, cash flows that occur between nodes, bar-
rier options, and path-dependence.

n Hull and ‘White [1994a], we describe a proce-
dure for constructing trinomial trees for one-
factor yield curve models of the form:

dx = [B(t) — ax] dt + odz . 1

where x = f (r) is some function of the short rate r,
0(t) is a function of time chosen so that the model
provides an exact fit to the inidal term structure of
interest rates, and a and © are constants.

The model can be written

dx =a[%—*x]dt+cdz
a .
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This shows that, at any given time, x reverts toward
the value O(t)/a at rate a. Its variance rate per unit
time is 02,

When f{r) = r, the model reduces to the Hull-
White [1990] model:

dr = a[0(t) — 1} dt + Gdz (1A)

The attraction of the Hull-White model is its
analytic tractability. As shown in Hull and White
[1990, 1994a), bonds and European options at some
future time t can be valued analytically in terms of
the initial term structure and the value of r at time t.
When f () = log(r), and a and G are allowed to be
functions of time, the model becomes that of Black
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and Karasinski [1991]. When f (r) = log(n), a(t) =
~0’(t)/G(t), and G'{t) = d6/dt, the model becomes
the Black, Derman, and Toy {1990] model.
Construction of the Hull-White tree occurs in
two stages. The first stage involves defining a new vari-
able x* obtained from x by setting both 8(t) and the
initial value of x equal to zero. The process for x" is:

dx* = —ax*dt + 0di | 2)
We consltruct_a tree for x* that has the form shown in

Exhibit 1. The central node at each time step has x*
= 0. The vertical distance between the nodes on the

tree is set equal to Ax' = ’\/3V, where V is the

variance of the change in x in time At, the length of
each time step. The probabilities at each node are
chosen to match the mean and standard deviation of
the change in x* for the process in Equation (2).!

_ Defining the expected change in x* as Mx*, at
node jAx* the up-, middle-, and down-branching
probabilities are

1 .zMz .
+ i - : + M

Pv =

6 2
2 20 22
== - i’M
Pm =3
1 #M?% - M
=~ + 3A
Pa = ¢ 2 (38)

As indicated in Exhibit 1, we cope with mean
reversion by allowing the branching to be non-stan-
dard at the edge of the tree. At the top edge of the
tree, where the branching is non-standard, the modi-
fied probabilities become

o1, IM® +3M
Pu = 2 >
1 5.2

Pm = -5 — IM" - 2jM

(3B)
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EXHIBIT 1
THE INTTIAL TREE FOR X" (SETTING 8(t) = 0 AND X{0) = 0)

N

and at the bottom ‘edge of the tree where the branch-
ing is non-standard, the modified probabilities become

P‘:l+J2M2—jM
Y ¢ 2
1 2y o2
Pm = =3 — IM" +2jM
2 2'
pe = -+ L4 = 3M (30)

The second stage in construction of the tree
involves forward induction. We work forward from
time zero to the end of the tree, adjusting the location
of the nodes at each time step so as to match the ini-
tial term structure. This produces a tree of the form
shown in Exhibit 2. The size of the displacement is
the same for all nodes at a particular time t, but is not
usually the same for nodes at two different times, The
effect of this second stage is to convert a tree for x*
into a tree for x.

The full details of the tree-building procedure
are given in Hull and White [1994a)]. In Hull and
White [1994b], we describe modeling two interest
rates simultaneously and using the tree-building tech-
nology to construct two-factor models of a single
term structure,

The purpose of this article is to provide more
details on the basic Hull-White tree-building proce-
dure. We discuss how to use analytic results when f (1)
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= 1. We provide sample results based on a real yield
curve that readers can use to test .their own imple-
mentation of the model. We show how the tree-
building procedure can be used for models such as
Black and Karasinski {1991] where 2 and G are func-
tions of time, but.point out some pitfalls of these
models. We also discuss how the length of the tme
step can be changed, how cash flows that occur
 between time steps can be handled, and so on.

I. ANALYTIC RESULTS

Bond Prices

When f(r) =1, the model in Equation (1) is
analytically very tractable. For example, as shown in
Hull and White {1990, 1994al: '

P(t, T) = Alt, T)eBETF (4)

where P(t, T) is the price at some time t of a zero-
coupon bond maturing at time T, A and B are func-
tions only of t and T, and 1 is the short-term rate of
interest at time t. The function A is determined from
the initial valuis of the discount bonds, P(0, T):

PO.TD) oBe, TIFO. 1) -

AD =309
6?B(t, T2 — € )/ (4a)]
B, T) = (1 = ¢ %)/a (5)

F (0, 1) is the instantaneous forward rate that applies to
time t as observed at time zero. It can be computed
from the initial price of a discount bond as F (0, t) =
—dlogP(0, ))/0t.

The variable r in Equation (4) is the instanta-
neous short rate, while the interest rates on the Hull-
White tree are At-period rates. The two should not
be assumed to be interchangeable. Let R be the At
period rate at time t, and r be the instantaneous rate
at time t. Using Equation (4):

e—RA: = A(t, €+ At) e—B(:,:+A:):
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EXHIBIT 2
THE FINAL TREE FOR X
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so that

_ RAt + loghft,t + At)

FT B(t,t + At ©

To calculate points on the term structure,
given the At period rate R at a node of the Hull-
White tree, it is first necessary to use Eguation {6) to
get the instantaneous short rate, r. Equation (4} can
then be used to determine rates for longer maturides.
‘When this procedure is followed, it can be shown that
the prices of discount bonds that are computed are
independent of the forward rate, F (0, £).2

Expected Future Rates

Inspection of Equations (1) and (2) shows that
x(t) and x*(t) differ only by some function of time.
Define this difference as

o) = x(t) — x(®) Y

This is the difference between the location of
comparable nodes in the x and x* trees at time t. In
particular, it is the difference between the central or
expected values of x and x* at time t, and since the
expected value of x* is zero, (t) can be interpreted as
the expected value of x(t). As Kijima and Nagayama
[1994] and Pelsser [1994] point out, O(t) can be cal-
culated analytically for the model where fo=r
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Differentiating Equation (7), it follows from
Equations (1) and (2) that

T = o) - aofe)

or
oft) = CXP{-N{I @ + j 8(a) c‘qd'q]}
0

Substituting the analytic expression for B(t)
given in Hull and White {1990, 1994a], this reduces to

0'2

232(1 _ c“ﬂ.t)z

at) = F(O,T) + (8)

Use of the analytic expression for & to deter-
mine the location of the central nodes in the tree
avoids the need to obtain them from forward induc-
tion.® The resulting tree, however, does not provide
an exact fit to the initial term structure. This is
because the tree is a discrete representation of the
underlying continuous stochastic process. The advan-

EXHIBIT 3

THE DM ZEero-CouroN YIELD CURVE, JuLy 8, 1994
Maturity Days Rate
3 days 3 5.01772
1 month 3 4.98284
2 months 62 497234
3 months 94 4.96157
6 months 185 4.99058
1 year 367 5.09389
2 years ™ 5.79733
3 years 1,096 6.30595
4 years 1,461 6.73464
5 years 1,826 6.94816
6 years 2,194 7.08807
7 years 2,558 7.27527
8 years 2,922 7.30852
9 years 3,287 7.39790
10 years 3,653 7.49015
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tage of the forward induction procedure is that the
initial term structure is always matched exactly by the
tree itself.

II. AN EXAMPLE

To give an example of the implementation of
the model, we use the data in Exhibit 3. These data,
which are for the DM yield curve ‘on July 8, 1994,
were kindly provided to us by Antoon Pelsser of ABN
Amro Bank. Data points for maturities between those
indicated are generated using linear interpolation.

The zero curve is used to price a three-year
(= 3 X 365-day) put option on a zero-coupon bond
that will pay $100 in nine years (= 9 X 365 days).*
Interest rates are assumed to follow the Hull-White
{Equation (1A)] model. The strike price is $63, and
the parameters 2 and O are chosen to be 2 = 0.1, and
o = 0.01. These two parameters determine the
volatility of the discount bond for option pricing pur-
poses. The values chosen are roughly representative of
the values observed in the market. The tree is con-
structed out to the end of the life of the option. The
zero-coupon bond prices at the final nodes are caleu-
lated analytically as described above. '

Suppose you want to construct a three-step
tree. First, we must determine the time and wate step
sizes, and where non-standard branching (if any)
takes place. The size of the time step is At = 365 days
= 1.0 years. _

As shown in Hull and White [1994a], the
expected change in r* and the variance of the change
in r* in time At are given by

E{dr"] = Mr* = (e - 1) r*
Var[dr*] = V = ¢*(1 — e7%49/2a

For the given parameter values, M =
—0.095162582 and 4V = 0.009520222, Since the

step size Ar = 43V, Ar = 0.016489508. Finally, as
shown in Hull and White [19942], non-standard
branching takes place at nodes *j* where j* is the
stnallest integer greater than —0.184/M. In this case,
is 2. The data defining the initial tree are shown in
Exhibit 4. :
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EXHIBIT 4

PATA DEFINING A Turee-STEP TREE IN ¢°
] Rate = JAr P, P Pe Equation
2 0032979 0.899291 0011093 0.089616 3B

1 0.016490 0123613  0.657611 0.218776 3A
0 0.0 0.166667 . 0.666667 0.166667 A
-1 -D.0164%0 0.218776 0657611 0.123613  3A
-2 —0.032979 0.089616 0.011093 0899291 3C

The rates at each node in the tree at cach time
step are now shifted up by some amount, &, chosen
so that the revised tree correctly prices discount
bonds. Since there are nodes at the one-, two-, and
three-year points, we need the discount bond prices
corresponding to these dates as well as the four-year
price, one time step beyond the option maturity.
When the option price is calculated, the nine-year
bond price will be required as well.

EXHIBIT 5

This information, interpolated from the data in
Exhibit 3, is shown in Exhibit 5. Exhibit 5 also shows
the value of & required to fit the bond prices at each
time step. An efficient procedure for implying the
value of o is given in Hull and White [1994a]. For
reference purposes, the instantaneous forward rate and
the instantaneous values of ¢ [based on Equation (8)]
are also shown.

Combining the os from Exhibit 5 with the,
rates and probabilities in Exhibit 4 produces the
complete tree. The tree is shown in Exhibit 6,
which shows the At period rates at cach node of the
tree and the probabilities of branching from one
node to the next.

Exhibit 7 shows how this tree can be used to
compute the price of a two-year discount bond. At
each step, the bond price is computed as the discount-
od value of the expected value at the next time-step.
Calculations of the type shown in Exhibit 7 are used
to determine what value of & is needed at each time

AMOUNT, 0., BY WHICH INTEREST RaTES AT EAcH TIME STEP MusT BE RAISED TO REPLICATE BonD PRICES

COMPUTED FROM ZERO-COUPON DiscounT RATES

Discount Forward o) -
Time Step i t = iAt Years  Zero Rate (%) Bond Price o (%) Rate (%) Equation (8) (%6)
0 0.0 5.017720 1.000000 509275 5.017720 5.017720
1 1.0 5.092755 0.950348 6.50257 5.299942 5.304470
2 2.0 5.795397 0.890557 7.33932 7.206143 7.222572
3 "30 6.304557 0.827673 8.05381 7.830417 7.864004
4 4.0 6.733466 0.763885
9.0 7.397410 0513879
EXHIBIT 6
THE Four TIME STEPS IN THE INTEREST RATE TREE
_Transition Probabilities Node Rates, R, (%)
j By P Pa i=0 i=1 E=2 i=3
2 (.8993 0.0111 0.0896 10.6372 11.3517
1 0.1236 0.6576 0.2188 8.1515 8.9883 9.7028
0 0.1667 0.6667 0.1667 5.0928 6.5026 7.3393 8.0538
-1 0.2188 0.6576 0.1236 4.8536 5.6904 6.4049
-2 0.0896 00111 0.8993 40414 4.7559

The probabilities of transiting from node (i, j) to nodes i + 1, § + H, G+ amdE+1,j-1)are normally p, ). p,,G) and p)
respectively. When j = 12, the alternative branching schemes are used. :
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EXHIBIT 7

COMPUTING THE PRICE OF A BOND THAT PAYS $1 AT TIME 2At (TWO YEARS)

Transition Probabilities Bond Price
i P, P 1=0 i=1 . 1= 2
2 0.8993 00111 0.0896 1.0
1 ' 0.1236 0.6576 0.2188 : 0.9217 ’ 1.0
0 0.1667 0.6667 0.1667 0.8906 0.9370 1.0
-1 0.2188 0.6576 0.1236 0.9526 1.0
~2 0.0896 0.0111 0.8993 1.0
Each value is calculated as 1

= OVis101 F PVierg ¥ PaVisa ) eXPIRy; A0

step in order to replicate the discount bond prices.
Exhibit 8 shows the calculations required to
compute the discount bond prices at the option
maturity, three years. Finally, Exhibit 9 shows the dis-
counting of the option value back through the tree.
The results of pricing this put option for trees
of different size are shown in Exhibit 10. This exam-
plé provides a good test of implementation of the
model because the gradient of the zero curve changes
sharply immediately after the expiration of the
option. Small errors in the construction and use of
the tree are Liable to have a big effect on the option
values obtained. For example, when 100 time steps
are used, the value of the option is reduced by about

EXHIBIT 8
CoMPUTING THE OpPTION PAYOFF AT EACH TERMINAL
NoDE (i = 3) ON THE TREE
At-Period Instantaneous Bond Option
3 Rate, R Rate, r Price Payoff
2 0.113517  0.113206 0529196 10.080445
1 0.097028 0.095878 0572229 5777133
0 0.080538 0.078550 0.618761  1.123884
~1 0.064045 0.061222  0.669078 0.0
-2 0.047559 0.043805 0723486 0.0

The Atperiod rate, R, is the rate that applies from three to four
years. ‘The instantaneous rate, 1, is computed using Equation (6}.
The forward rate at time 3 is computed to be 0.078304. On the
basis of this, Equation (5) gives

A3, 4) = 0.994229, A(3, 9) = 0.881944,

B(3, 4) = 0.951626, B(3, 9) = 4.511884 -
The bond price, P(3, 9), is computed with Equation (4}, and the
option payoff is 100 Max[0.63 —P(3, 9), 0].
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$0.25 if the At-period rate is assumed to be the
instantaneous rate.

III. MAKING VOLATILITY PARAMETERS
TIME-DEPENDENT

When a and © are functions of time, the model
in Equation (1) becomes
£

= [0(t) — at) x] d¢t + o(t) dz )

The three functions of time in this diffusion equation
each play a separate role. The function 8{t) is chosen
so that the prices of all discount bonds are matched at
the initial time. The other two fiunctions provide two
extra degrees of freedom that allow us to match the
initial volatility of all zero-coupon rates and the
volatility of the short rate at all future times.

The tree can then be tuned to price not only
the zero-coupon bonds, but also a set of interest rate
derivatives at their current market prices. The initial
volatility of all rates depends on ¢(0) and a(t). The
volatility of the short rate at future times is deter-
mined by O(t). Unless 6{t) and a(t) are constants, the
volatility term structure is non-stationary.

Our tree-building procedure can be extended
to accommodate the model in Equation (9).
Analogously to the constant a and O case, we first
build a tree for x* where

dx* = —a(t)x"dt + o(t)dz
We first choose the times at which nodes will
be placed, t, t;, t,, ..., t,, where t, = 0, and t, = iAt
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EXHIBIT 9

DISCOUNTING THE OPTION PRICE BACK THROUGH THE TREE

Transition Probabilities Time Step, i

j P. P Py 0 1 2 3
2 0.8993 0.0111 0.0896 82987 10.0804
1 0.1236 - 0.6576 0.2188 4.1977 48362 57771
0 0.1667 0.6667 0.1667 1.8734 1.7854 1.5910 1.1239
-1 0.2188 0.6576 0.1236 0.4885 0.2323 0.0000
) 0.0896 0.0111 0.8993 0.0967 © 0.0000
o (%) 5.0928 6.5026 7.3393 8.0538

At the third step the option value is as given in Exhibit 8. The computed value at earlier steps is

Vii = Py ¥ PraVisty + Pavirgn) SxPERy; A9

where R, the rate at node j and time step i, is o + jAr, Note that when j = 32, non-standard branching 2pplies. When j = 2 the com-

puted value is v, = (B ¥ PrVisg * PaVir 42
Pgviery) SXPORy; An). .

) exp{—R,; At), and when j = -2 the computed value is v;. = (Vi yjea ¥+ PraVisr jos +

fori =0, ..., n. The vertical (x" dimension} spacing
between adjacent nodes at time t,,, is then set equal
to -\}3\7; where

V, = oft)’(1 — ¢ W) /2()

Suppose that the value of x* at the jth node at.
time ¢t is x;'j . The mean and standard deviation of

. P * .
x* at time t,, conditional on x*' = x;; at time ¢; are

*

’ L]
ij + Mix;j and V, , where

approximately x

M.

1

— (e—a(ti)At _ 1)
4

We match these by branching from x:’j to one of
* * * -
Kitik-10 Xittkr 304 Xipipsr, where k is chosen so
* L]
ij + M.ixilet-

We then calculate the displacements, Q.(t), necessary
for the tree to match the initial term structure.

The 2{t) and G{t) can be set in advance of the
numerical procedure. Alternatively, it is not difficult
to devise a numerical procedure that chooses a(t) and
6(t) so that the initial prices of caps or swap options
(or both) are matched. When used for x = log(r), this

that X}, x is as close as possible to x
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type of tree-building procedure has the advantage
over Black and Kansinski [1991] that the length of
the time step is under the control of the user.

It seems appealing to take advantage of all the
degrees of freedom in 2 model to fit initial market
data exactly. The resulting non-stationarity in the
volatility term structure, however, may have many
untoward and uncxpected effects. To illustrate this,
we use the x = r model:

dr = [8(t) — a(t) 1} dt + O(t) dz

and show the effect of matching cap prices.
Caps are usually priced using Black’s model,

EXHIBIT 10

VALUE OF A THREE-YEAR PUT OPTION ON A NINE-YEAR,
$100, Zero-CoUPON BOND — STRIKE PRICE $63;
VOLATILITY PARAMETERS a = 0.1 AND 6 = 0,01

Tree-Based Analytic

Steps Value Value
10 1.8491 1.8093
30 1.8179 1.8093
50 1.8060 1.8093
100 1.8128 1.8093
200 1.8089 1.8093
1.8093

500 1.8090
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EXHIBIT 11
BLACK’S VOLATILITY FOR AT-THE-MONEY CAPLETS
RESET MONTHLY

%
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n / \\ -
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11 \\__:
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P

16

under which the price at time zero of a caplet expir-
inig at T on 2 rate that applies from T to T + T is

C = PRI+ [F(T, T + YN(,) — XN(d,)]

where P is the notional principal, R is the zero-
coupon rate with a maturity T + T, F(T, T + 1) is the
forward rate for the period T to T + 1T, X is the cap
rate, and

logB(T, T + /X . w(TWT
d = +
v(INT 2
d; = dy ~ V(T)ﬁ

where v(T) is the volatility for the caplet expiring at T.

The data set that we use for calibration consists
of the market prices of at-the-money caps that are
reset monthly (T = 1 month). The particular v(T)
function we assume for illustration purposes is shown
in Exhibit 11.> This has a similar shape to the v(T)
function commonly observed in the market. We

assume the term structure is flat at 7% continuously

compounded.

In order to match the Black volatilities we
first nuse them in conjunction with Black’s model to
calculate caplet prices. We then match the caplet
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prices in two ways:

1. We fix the short rate standard deviation, G, and
allow the reversion rate, a, to be a function of time.
2. We fix a and allow O to be a function of time.

Exhibit 12 shows the value of a(t) required to
fit the market data when O is fixed at 1.4% and the
value of G(t) required to fit the market data when a is
fixed at 5%.% It can be seen that the implied a(t) and
() exhibit severe non-stationarity. Although by con-
struction this non-stationarity leads to caplets being
priced correctly, it is Hable to lead to unacceptable
results when used to price other instruments.

Any instrument whose price depends on the
future volatility structure, rather than today’s voladlity
structure, is liable to be mispriced by a model with
time-dependent volatility parameters. One example
of such a security is an American-style call option
where the decision to exercise at some future date
depends on the volatility structure at that date.
Another example is a caption, an option to buy a cap,
where the decision to exercise the option at expira-
tion depends on the value of the cap at that time.

This example illustrates the sort of problems
that can arise when a model is implemented in such a
way that the volatility structure is not stationary. Itis a

EXHIBIT 12

VALUE OF a{f} WHEN G = 1.4% (LEFT-HAND SCALE), AND
VALUE OF o(t) WHEN a = 5% (RIGHT-HAND SCALE) -
REGUIRED TO REPLICATE CAPLET PRICES COMPUTED
FROM BLACK VOLATILITIES IN EXHIBIT 11

KT B
" 1w
Im -/—I\‘M—-‘-_ Al TN [ I“
o% } PR ; et ' )
l : L ¢ 6 7 & 9
Years
- 1%
B S [ Black Volatility ™
i —— (1) (o= | 4%
%, 2 ) .
i — o) (a=5%)
; mmmlﬂh)
-} | | | 1 oax
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EXHIBIT 13
THE TREE FOR X* WHEN LENGTH OF
TIME STEP CHANCES

problem that afflicts al] Markov interest rage models
including the Black, Derman, and Toy and Black and
Karasinski models,

By fitting a one-factor Markov interest rate
model to today’ Option prices, we make jt reflect the
initial volatility struceure exactly, but we are also
unwittingly. making a staternent about how the volatiL.
ity term structure will evolve in the furure, Using all
the degrees of freedom ;n the model to fit the volatili-
ty exactly constitutes an Overparameterization of the
model, It is our opinion that there should be no more
than one time-varying barameter used in Markoy
models of the term structure evolution, and that this
should be used to fit the initial term structure.

IV. OTHER ISSUES

There are a number of other practical issues to
consider when implementz'ng Hull-White trees for
valuing interest rate derivatives. We review some of
them and indicate how to handle them,

In our description of the tree-building proce-
dure in Hull and White [1994a], we assume that the
length of the time step 15 constant. In Practice, it is
sometimes desirable to change the length of the time
step.” Changing the length of the time Step is straight-
forward. When drawing the tree for X", we first
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choose the tmes at which nodes will be placed, 1, ¢,
ty ..o t, where t, = 0. _Deﬁm’ng At = Ly — L fori =
0, ...n =1, the vertical (x* dimension) spacing
between adjacent nodes attime ¢, is then set equal

1o /3V, where

Vi = 61 - ey oy

1

From this point, construction is similar to the
procedure followed when the volatility paramieters are
a function of time. Suppose that the value of x* at the
Jth node at time £ is x;:j. The mean and standard

. - . . *
deviation of x* ar tume t. . conditional op x* = X ; at

. . * *
ame t; are approximately X;j + Mixi,j and, wiere

M.

= )
We match these by branching from X; j to one
* ® * .
of X4 1k, Firrks OT Xy, where k s chosen so
* . . - *
that X,y is as close as possible to X + Mix;jAti.
Note that whenever the size of the time step changes,
At # At +1» the vertical (x* dimension) spacing beeween

I

nodes increases by fAt,,/ At; . This means that the

branching is non-standard at points whep the length
of the time step changes.

Exhibit 13 illustrates the tree that is construct-
ed when the time Step increases by 2 facror of three
after two time steps. i

The tree for x is constructed from the tree for
X" to match the injtial Z€ro-coupon yield curve ag
described in Hull and White [1994a]. Note that,
when the length of the time step changes from At to
Atm, the interest rates considered at the nodes auto_
matically change from the At; period rates to the

Another issue in construction of the tree con-
cerns cash flows that occur berween nodal dates,

“Suppose a cash flow occurs at time 1 when the imme-

diately preceding nodal date is t. and the immediately
following nodal date s t,.. One approach is to dis-
count the cash flow from Hme T to the nodes at time
L using estimates of the 7 — t. rates Prevailing at the
nodes at time t % Another 3pproach is to assume that
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a proportion (T - t)/(z,, - t) of the cash flow occurs
at time t,, while the remainder occurs at time t.? A
final approach is to avoid the problem altogether by
changing the length of the rime step so that every
payment date is also a nodai date.

Barrier options present a further problem in
use of the tree, because convergence tends to be slow
when nodes do not lie exactly on barriers. In the case
of an interest rate option, the harrier is typically
expressed in terms of a bond price or a particular rate.
When x = r, analytic results can be used to express
the barrier as a function of the At-period rate. Non-
standard branching can then be used to ensure that
nodes always lie on the barrier. Ritchken [1995]
describes such an approach, and shows that a substan-
tial improvement in performance is possible with it.

An alternative approach that has more general
applicability is to extend the idea suggested by
Derman et al. {1995] to interest rate trees. This
approach involves using a procedure to correct values
of the derivative calculated at nodes close to a barrier.

A final problem in the use of interest rate trees
1s path-dependence. This can sometimes be handled in
the way described by Hull and White [1993]. The
requirements for the Hull-White method to wotk are:

. The value of the derivative at each node must
depend on just one function of the path for the
short rate r (e.g., the maximum, minimum, or
average value),

2. In order to update the path function as we move
forward through the tree we need to know only
the previous value of the function and the new
value of r.

Hull and White show how the approach can
be used for index amortizing swaps and mortgage-
backed securities. The televant path function in each
case is the remaining principal.

V. SUMMARY

The Hull-White tree-building procedure is 3
flexible approach to constructing trees for a wide
range of different one-factor models of the term
structure. ‘The tree is constructed to be exactly consis-
tent with the initial term structure.
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In this article we show how to extend the
basic procedure presented in our earlier work. Some
of these extensions involve the use of analytic results,
and some involve chanping the geometry of the rree
to reflect special features of the derivarve under
consideration.

We have devoted some time to a discussion of
what happens when the volatility parameters are made
time-dependent. It not difficult to extend the Hull-
White tree to incorporate time-dependent parameters

so that the prices of caps or swap options (or both) are-
-matched, but this is liable to result in unacceptable

assumptions about the evolution of volatilities.
ENDNOTES

'"The expected value and vardance of the change
in x* over some time At are

Ed¢"] = Mx* = (et — 1) x*: and

Var [dx*] = V = g2(1 - e wAn g

“Since the forward rate is computed from the first
derivative of the yield curve, it is very sensitive to the exact
shape of the yield curve, Slight variations in the vield curve
create large changes in the computed forward rate. If the
computed bond price had depended on the forward rate,
the results would be Very sensitive to exactly how one
computes the yield curve,

Forward induction is always necessary when
£(r) # r, because there are no analytic results in that case.

*The fundamental unit of time in this example is
one day. For convenience, we define one year as 365 days,
which is approximately the length of 2 real year, and quote
rates and volatilities per year. The dara in Exhibic 3 are
quoted on this basis. Thus the ten-year rate of 7.49015% 15
actually 2 rate of 0.0205210% per day. This rate applies for
3,653 days or about 10,0082 years. This convention may
seem cumbersome, but is necessary to avoid the ambiguity
associated with the variable length of a calendar year.

SThis volatility curve is

V(T) = [1 +bT + ¢ (1 - Ty v(0)
forT<S, b= ~0.1,c¢=05d=08, and v{0) = 0.2. The
curve is extended beyond T = § by assuming that the gradi-
ent of v(T)T when T > 5 equals its gradient when T = 5.

®The choices of the fixed value for o and the
fixed value for a are arbitrary, although the implied values
of a(t) and O(t) are representative of the type of non-sta-
tionarity that results from the given volatility structure
The best fixed value of ¢ (or a) to use might be the one
that minimizes the variance of the implied a(t} [or o(1)]
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7Suppose the lognormal model is used to value a
European six-month option on 2 five-year bond. It might
be appropriate to usc a longer At between six months and
five years than during the first six months. This is because
the part of the trec between six months and five years is

" used only to value the underlying bond. .

81 the case of the Hull-White x =« model, these
rates can be calculated analytically.

9This approach has the effect of apportioning the
cash flow to nodal dates, while ensuring that the expected
time when the cash flow occurs is cotrect.
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